
OVERVIEW

• Project start – October, 2018

• Project end – September, 2023 (50% completion)

• Total project funding (to date) – $525K, DOE share –

$525K, funding for FY20 – $175K, funding for FY21 

– $175K

• Technical barriers addressed - cost, size and weight, 

performance, reliability and lifetime

RELEVANCE

• Wide-bandgap devices such as silicon carbide and 

gallium nitride enable low-cost, lightweight, and 

power-dense automotive power electronics; 

however, these technologies are currently limited by 

power electronics packaging.

• It is critical that the packaging design and materials 

withstand the high-temperature operational 

environment introduced by the wide-bandgap 

devices; bonded interfaces must be reliable under 

extreme thermal stress conditions.

• The main objective of this project is to evaluate the 

reliability and study the failure mechanisms of 

bonded interface materials for high-temperature 

power electronic applications.

COLLABORATIONS

• Virginia Tech: technical partner on the synthesis of 

sintered silver bonds

• Georgia Tech: technical partner on the synthesis of 

Cu-Al bonds

• Oak Ridge National Laboratory & Ames Laboratory: 

technical guidance and discussion

SUMMARY 

• Conducted the reliability evaluation of sintered silver 

under a thermal cycling profile of −40ºC to 200ºC; 

95Pb5Sn solder exhibited better thermomechanical 

performance than sintered silver.

• Formulated a lifetime prediction model of sintered 

silver by correlating experimental crack growth data 

with strain energy density outputs from modeling.

• Developed a 2D crack propagation model of sintered 

silver using the extended finite element method.

• Evaluated the bonding quality of Cu/Al bonds after 

synthesis; additional refinements are required to 

reduce the defect fraction.  

APPROACH
ACCOMPLISHMENTS (contd.)

C-SAM image of a Cu-Al bond between AlSiC and AlN (left), 

strain energy density results of Cu-Al bond under different 

sample configurations (right)

CHALLENGES AND BARRIERS

• Correlation between simulations and experimental 

results is hard to establish due to the macroscopic 

nature of modeling and microstructural causes of 

failure mechanisms in bonded materials.

• While current formulations of sintered silver may 

work for small-area attach (die-attach), novel 

material compositions and microstructures need to 

be identified for large-area attach layers with 

sufficient reliability.

• Synthesis profile and parameters of Cu-Al bond 

need to be optimized to reduce the initial void 

fraction to acceptable levels (<5%).

FUTURE WORK

• Conduct accelerated thermal cycling of Cu/Al bond 

samples under different temperature profiles: 

−40ºC to 200ºC and −40ºC to 175ºC. 

• Expand the microstructural crack propagation 

model to include physics at lower length and time 

scales and establish microstructure-property 

relationships to accelerate novel high-temperature 

material development.

• Identify new material compositions for reliable 

operation at high temperature through experimental 

and data-driven modeling approaches.

ACCOMPLISHMENTS AND PROGRESS

• Solder (95Pb5Sn) samples exhibited higher reliability 

than sintered silver under a thermal cycling profile of 

−40ºC to 200ºC at both 10-mm- and 25.4-mm-

diameter configurations.

• The lower the outer disk thickness, the higher the 

reliability.

• A correlation was established between the strain 

energy density results and the experimentally 

measured crack growth rates of sintered silver to 

formulate a lifetime prediction model.

• The fracture mode of solder was observed to be 

predominantly adhesive in nature.

• Simulations computed lower values of strain energy 

density for solder compared to sintered silver.

• Developed a preliminary 2D crack propagation model 

of sintered silver using XFEM.

• This model is currently limited to linear elastic 

properties; future iterations will incorporate inelastic 

deformation behavior and thermal cycling loads.

• The model will be extended to other materials for high-

temperature power electronics applications.
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• Materials considered in this project are sintered 

silver and Cu–Al transient liquid-phase alloy.

• These materials are bonded in a sample 

configuration and subjected to −40ºC to 200ºC 

thermal cycling profile.

• C-SAM images of the bond material at periodic 

cycling intervals would be obtained and 

analyzed to calculate crack growth rates.

Samples with three different bond diameters were fabricated: 

22 mm (left), 16 mm (center), and 10 mm (right)

Sintered 

silver bond

Outer coupon 

(Cu/Invar)

Invar

Copper

Sample structure

Sintered silver

Image Credit : Darshan Pahinkar

Al: aluminum, AlN: aluminum nitride, AlSiC: aluminum silicon-carbide, DBA – direct bond aluminum, 

DBC – direct bond copper, Cu: copper , C-SAM: C-mode scanning acoustic microscope, 

SEM: scanning electron microscope, XFEM: extended finite element method

SEM image of Cu–Al bond
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• A lifetime prediction model correlating the 

crack growth rates and modeling outputs 

will be developed.

Crack growth comparison of low-pressure-assisted (3 MPa) 

sintered silver and solder samples under thermal cycling
Lifetime prediction model of sintered silver

Crack propagation model of sintered silver: von-Mises stress plot of the 

bond between Cu and Invar at the start of a temperature change from 25ºC

to 200ºC (top); detailed view of the crack (bottom right); crack status at 

200ºC (bottom left) 
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• Conducted non-linear thermomechanical 

simulations to study the deformation behavior of 

Cu-Al bond under thermal cycling.

• Suitable constitutive models for the Cu-Al bond do 

not exist; used a kinematic hardening model based 

on Al stress-strain data as an approximation.

• Simulations results indicate that a Cu-Al bond 

between DBA and AlSiC is more reliable than AlN

and AlSiC however, this trend may change with a 

more appropriate constitutive model; also, it is 

experimentally challenging to create a Cu-Al bond 

with DBA.

Invar

Copper

Solder

Crack propagation in solder

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

AlN - AlSiC DBA - AlSiC DBC - AlSiC

St
ra

in
 E

n
er

gy
 D

en
si

ty
/C

yc
le

 (
M

P
a)

Design Comparison


